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2 EXECUTIVE SUMMARY 

In response to the global decline in biodiversity, bp, Microsoft and Conservation Science Partners (CSP) 
have partnered to develop tools to help address the challenge of monitoring biodiversity and efforts to 
restore it. Guided by the adage "you cannot manage what you don't measure," our collaboration aims to 
develop innovative solutions to better measure, monitor, and manage biodiversity.  
 
Monitoring biodiversity is critical to understanding impacts, informing conservation actions, and tracking 
progress towards conservation goals. Recently, guidelines have been provided by the Task Force for 
Nature-based Financial Disclosures (TNFD), International Union for Conservation of Nature (IUCN), and 
others for assessing impacts on biodiversity and the risks from biodiversity loss. However, there is 
limited specificity on what and how to measure and monitor biodiversity and thus a clear need for 
scientifically informed and technology-enabled solutions. Therefore, we formed a partnership to do just 
that: to develop a biodiversity monitoring solution that integrates ecological models and theory with 
data science.  
 
Our solution aimed to combine advanced machine learning methods with Microsoft’s Planetary 
Computer and publicly available species observation data (from the Global Biodiversity Information 
Facility [GBIF]) to develop an important conservation tool – called a habitat suitability model (HSM) – 
frequently used by ecologists and conservation practitioners to map species distributions and track key 
biodiversity metrics. The HSM framework was developed within a digital pipeline for continuous 
biodiversity data integration and adaptive model development, making the HSM a rapid, scalable, and 
automated tool.  
 
The tool and technologies were piloted at bp's Cherry Point Refinery in Washington State, because it is 
an active site with ongoing wetland restoration and forest management. HSMs were developed for 52 
plant and animal species for each year from 2014 through 2022. Preliminary findings suggest increasing 
species richness in restored sites and other natural areas, and little to no change in species richness in 
the more industrialized areas. While these findings may indicate improvements in habitat, further study 
is required for validation and ongoing assessment of restoration impacts.  
 
HSMs have become an increasingly important tool for biodiversity monitoring, but they have some 
known limitations mainly related to the inherent biases associated with opportunistically collected data 
like the GBIF data that we used. Integrating systematically collected site-level field data will be an 
important way to account for such biases in the future and is being explored as a next step. Recent 
advances in technology also give us a unique capability to record and track species and environmental 
conditions at temporal and spatial scales not seen before, and as the cost of these technologies 
decrease, there is an opportunity to deploy them at scale. Integration of these data with HSMs can then 
generate more accurate inference, at finer resolutions and broader extents, moving us towards 
temporally and spatially continuous monitoring of biodiversity.  

This project brought our companies together to develop innovative solutions to a globally important 

sustainability problem. The HSMs and digital biodiversity platform developed here provide a foundation 

for moving forward. Combining this modeling tool with field data from sites could provide an 

opportunity to spot problems before they arise and monitor progress towards biodiversity restoration 

targets.  
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3 INTRODUCTION 

3.1 THE BIODIVERSITY CRISIS 
Our world is facing a biodiversity crisis brought on by multiple human drivers of environmental change. 

Recent analyses show that observed species’ populations have declined on average by 69% since 1970 1 

and suggest that a million plant and animal species will face extinction in the coming decades 2. This 

represents an unprecedented rate of loss – tens to hundreds of times higher than the average over the 

last 10 million years 2 – and it affects all areas of the globe, particularly areas of Latin America and Africa 

and our freshwater, grassland, and forest ecosystems 1,2.  

The primary driver of these losses is rapid land and sea use change 2. More than 70% of the world’s land 

area has been significantly altered for the purposes of agriculture, development, and resource 

extraction, with 85% of wetlands and roughly 32% of forests having been destroyed; and 66% of the 

world’s oceans have been experiencing negative anthropogenic impacts 2.  While habitat destruction is 

globally widespread, many of its effects often start locally leading to population declines and 

extirpations that cumulatively can trigger broader scale extinctions 3. These declines, extirpations, and 

extinctions can then affect whole ecosystems and the natural processes they provide and that humans 

depend on.  

The inextricable links between biodiversity and the natural processes that underpin human well-being 

means that biodiversity loss is a threat not only to precious species and genetic diversity, but to 

humanity’s food supply, health, and security 4. A recent World Economic Forum survey identified 

biodiversity loss as “one of the fastest deteriorating global risks over the next decade” 5, ranking it 

among the top global risks to human society next to climate action failure and extreme weather 6. 

Among the most important reasons biodiversity loss is a threat to human society is via its effects on 

climate change. The destruction of biodiversity in the form of key carbon-storing ecosystems, for 

example, like peatlands, mangrove, and tropical forests, have been shown to contribute roughly 20% of 

the total human CO2 emissions 7. Moreover, the world’s land and ocean ecosystems are key to absorbing 

about 56% per year of the CO2 emitted by humans 7.  

While the full extent of the risks of biodiversity loss are uncertain, the ensuing environmental 

consequences may be disproportionately larger than the loss of a single species or population. 

Ecosystem complexities and non-linear responses of biodiversity to environmental change correspond 

to potential tipping points, where ecosystems may not be capable of maintaining equilibrium beyond a 

certain impact-threshold 8. When ecosystems are pushed past these thresholds, there is a risk of large, 

abrupt, and potentially irreversible ecosystem collapse 9. Therefore, conserving or restoring biodiversity 

is critical to reducing global risks to human society and ensuring the resiliency of Earth’s life support 

systems.  

3.2 THE NEED FOR TRANSFORMATIVE CHANGE 
The major human drivers of biodiversity loss stem from globally outpaced production and consumption 

patterns 2,10. Given the severity of the risks of continuing with business as usual, it is clear that 

transformative change is needed to end the crisis. 2,4,11,12 Indeed, a “nature positive” movement has 

emerged that aims for a net positive effect on nature by 2030 and a resilient planet by 2050 1,13. This 
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movement goes well beyond previous goals of limiting or halting biodiversity loss to focus on restoring 

and enhancing biodiversity and ecosystems for the benefit of people and nature.  

G7 leaders have called for global system-wide change in order to ensure a nature positive world 14. The 

Taskforce on Nature-related Financial Disclosures (TNFD) is supporting and recommending shifts in 

global financial flows toward nature-positive outcomes 15. And, as the driving force in global 

conservation policy, the new Kunming-Montreal Global Biodiversity Framework (GBF) outlines nature 

positive global goals that aim to “catalyze, enable and galvanize urgent and transformative action by 

Governments, subnational and local governments, and with the involvement of all of society to halt and 

reverse biodiversity loss” 16. However, while the 196 signatory nations to the GBF are now working to 

implement national strategies for achieving these goals, collective action is needed across governments, 

the private and public sectors, and academic and civil society to truly bend the curve on biodiversity.  

The world now faces the challenge of achieving this collective biodiversity ambition, and key to this 

challenge is the lack of accessible tools for measuring and monitoring biodiversity, and the data and 

assessment pipelines needed for efficient decision making. We see three critical constraints affecting 

efficient and effective tracking of progress towards conservation targets, including: (1) limited data 

availability on the current state of biodiversity; (2) limited understanding of what biodiversity benefits 

can arise from certain operations and conservation interventions; and (3) limited processes for 

measuring and monitoring biodiversity benefits at scale.  

3.3 THE PARTNERSHIP AND GOAL 
bp recognizes the importance of taking action on biodiversity, and thus sought out a partnership with 

Microsoft and Conservation Science Partners (CSP) that would enable the development of ecologically 

informed, technological solutions for tracking biodiversity. Addressing this challenge together will not 

only help bp with site-level data on biodiversity and conservation impact assessment, but also help 

guide the broader regulatory and reporting landscape towards nature positive outcomes. 

bp also recognizes that addressing the challenge of global biodiversity decline requires transformative 

change. In 2020 bp updated its biodiversity position, setting out aims to have a net positive impact on 

biodiversity in new projects and to enhance biodiversity around existing major operating sites. To 

achieve this, the aim is to restore, maintain and enhance biodiversity, with greater effort on quantifying 

any change and progress. Because this aim requires bp to collect more data than ever before, it will 

require technological solutions that can handle the processing and analysis of large volumes of data to 

extract actionable information and enable strategic decision making.  

Microsoft was the logical company to partner with because of their own biodiversity goals. Microsoft 

aims to leverage technological advancements to reduce biodiversity loss and, by working with 

customers and clients, unlock new scientific and commercial opportunities in ecosystem monitoring. The 

bp-Microsoft partnership ultimately aims to combine bp’s energy and geospatial capabilities with 

Microsoft’s data and digital technologies to address biodiversity challenges, and, importantly, to 

accelerate the development and scaling of these solutions.  

To fully round out the team on this effort, Conservation Science Partners (CSP) joined as the third 

member, bringing scientific expertise in deploying ecological models at scale and in using rigorous 

science to inform conservation actions. CSP works across sectors to provide research and science 
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capacity, focusing on efforts that can inform biodiversity conservation and conservation policy. CSP’s 

Analytics Lab logically fit in with bp and Microsoft’s goals as they aim for projects that have a potential 

for impact and/or innovation at the intersection of ecology and data science. 

Collectively, our goal was to integrate scientifically supported ecological models and theory with 

advances in data science to develop technological biodiversity monitoring solutions. To do this, we 

leveraged advanced machine learning methods with Microsoft’s Planetary Computer – a cloud platform 

of global environmental data – and publicly available species observation data from the Global 

Biodiversity Information Facility (GBIF) to develop habitat suitability models (HSMs) for a range of plant 

and animal species. HSMs, otherwise referred to as species distribution models, are scientifically 

supported, quantitative approaches to mapping potential species distributions 17–24 and understanding 

what factors affect the probability of species occurrence 25. They can be readily refined or updated with 

new data sources and used to evaluate and track biodiversity over space and time 17. 

This project has two main objectives: (1) develop HSMs as the basis for monitoring changes to habitat 

suitability and biodiversity, evaluating the effects of conservation and management interventions, and 

testing practical and ecological hypotheses that can be used to inform the broader application of these 

tools; and (2) develop a digital pipeline for continuous biodiversity data integration and adaptive HSM 

development at scale, enabling rapid and automated biodiversity assessments. 

As an initial step toward deploying HSMs at scale, a ‘feasibility study’ was piloted at bp’s Cherry Point 

Refinery, located in USA’s Pacific Northwest (Fig. 1), where many restoration and management 

interventions have been and are being implemented to enhance biodiversity.  
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Figure 1. Feasibility study focusing on the Cherry Point Refinery (purple circle) in Washington, USA. 

Species occurrence and environmental data within the surrounding Puget Lowlands (dark pink) and 

North Cascades (light pink) ecoregions were used to train the habitat suitability models. 

4 HABITAT SUITABILITY MODELS 

Habitat suitability models (HSMs) have become an increasingly important tool for evaluating a variety of 

applied and fundamental questions in ecology, conservation biology, natural resource management, and 

climate change impact research 17,25–31. These models rely on empirical relationships between species’ 

occurrence data and environmental variables to predict probabilities of occurrence and ultimately infer 

their broader distribution. However, environmental conditions are one of several factors affecting a 

species’ true distribution (otherwise referred to as its realized environmental niche) across space and 

time, which can also include the dispersal ability of a species and complex biotic interactions (e.g., 

competition and predation) 31. Consequently, it is critical to evaluate HSM predictions against 

independent species occurrence data to understand where models can accurately approximate a 

species’ true distribution 17,26,27. Therefore, we sought to generate HSMs for multiple species of interest, 

initiate a process for evaluating model accuracy, and develop a pipeline for future, rigorous evaluation 

via model training and testing with ongoing field data collection.  

The output of an HSM is a map with values ranging from 0 to 1, depicting the probability of species 

occurrence (or, depending on the method, relative likelihood of species occurrence 26). When HSMs are 

developed for many species, the spatial predictions of suitable habitat can be aggregated into indices of 

biodiversity that can be used for evaluating the benefits or impacts of management actions for 

biodiversity enhancement 32. Two of these metrics are described in Measuring Biodiversity below.  
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We developed HSMs described in the next sections to evaluate the feasibility of a digital platform for 

tracking changes in biodiversity (see Fig. 2 for HSM workflow). 

  

 

Figure 2. Habitat suitability modeling workflow, with the sequence of steps following the arrows from 

top left to top right, to bottom right. The amount of species training data varies in this figure, as it 

depends on the number of presences recorded in the Global Biodiversity Information Facility (GBIF). 

For example, the American bittern (Botaurus lentiginosus; picture on left) had fewer observations 

than the wood duck (Aix sponsa; picture in center) and the American robin (Turdus migratorius; 

picture on right). The American bittern and wood duck are considered habitat specialists (i.e., species 

that thrive in a narrow set of environmental conditions) and the American Robin is considered a 

generalist (i.e., species that can occur in a range of environments). Background samples (blue rows) 

represent the locations, and associated features, where species were not recorded. Background 

sampling methodology is described below. 
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4.1 PILOT SITE: CHERRY POINT REFINERY 
The area of focus of the pilot study is located within the Terrell Creek watershed in the State of 

Washington, USA. Terrell Creek is bordered by emergent, scrub-shrub and forested wetland habitats. 

Land use in the wider area includes industrial (e.g., bp Cherry Point Refinery), agricultural, and forested 

areas. In addition to impacts from the refinery itself, the area owned and managed by bp adjacent to 

Terrell Creek has been impacted by historical and ongoing agricultural use (currently hay production). 

Over the past 20 years, bp has embarked on several different wetland mitigation projects in the form of 

wetland creation, wetland rehabilitation, wetland enhancement, and upland enhancement projects, 

with the latest project constructed in 2022 measuring 102 acres. The total area of wetland restoration 

area measures approximately 479 acres. Immediately south of the wetland restoration areas lies the 

refinery complex.  

bp is interested in monitoring the progress of wetland restoration and benefits to biodiversity at these 

sites over time and in comparing biodiversity metrics here with that of other wetlands in the area.  

4.2 SPECIES OCCURRENCE DATA 
We used species occurrence data from the Global Biodiversity Information Facility (GBIF) 33,34, as this is 

an international network of publicly available biodiversity data (e.g., iNaturalist, eBird) with millions of 

recorded species occurrences attributed with a data source, location and time recorded, and taxonomic 

classification. We compiled all GBIF observations that occurred from 2014-2022 within the Puget 

Lowlands and North Cascades ecoregions surrounding the Cherry Point Refinery (Fig. 1). We then subset 

these data to include only those observations identified to species and only those species with at least 

500 observations to ensure there was sufficient data for training and testing. From this list we then 

identified which species were habitat generalists (i.e., species that can live in many different 

environments) and habitat specialists (i.e., species that thrive only in a narrow range of environmental 

conditions). Given the focus on wetland restoration at the Cherry Point Refinery, we sought to include 

species with a preference for wetlands at any point in their life cycle (e.g., American bittern); however, 

we also included several forest specialists (e.g., ruffed grouse) given recent forest management also 

occurring within and around the study area. Our goal with generating HSMs for a wide range of species 

was to measure biodiversity and better understand how taxonomic group and habitat specialization 

relates to model performance. 

4.3 ENVIRONMENTAL VARIABLES 
We used publicly available environmental datasets with global coverage to allow tracking of changes in 

habitat conditions over time and deployment of our pipeline across other bp sites. We leveraged the 

large data catalog available on Microsoft’s Planetary Computer to make use of five different types of 

input datasets that are described below. These types, their corresponding layers, and how these layers 

were aggregated into model training features is outlined in Table A1 of Appendix A. 

Landsat multispectral satellite imagery: We used 30-m resolution Landsat-8 Level-2 Surface Reflectance 

multispectral satellite imagery as this enables frequent revisiting of sites under consistent observation 

conditions. Bands in the visible and infrared portions of the electromagnetic spectrum capture abundant 

information on environmental conditions, including vegetation and soil, as well as urban structures and 
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agricultural activities. Although focusing on Landsat-8, the long historical catalog of the Landsat missions 

allows for a relatively easy extension to older records. 

TerraClimate weather data: To capture climatic conditions, we used monthly aggregated TerraClimate 

weather records. This dataset enables us to do historical analysis potentially extending back several 

decades. The global coverage and gridded maps further allow for a more granular differentiation of 

habitats compared to spatially limited single-station measurements. 

NASA elevation data: Altitude, terrain roughness, and aspect are critical drivers of species distributions. 

The global, high spatial resolution NASA digital elevation model (DEM) provides granularity to distinguish 

terrain attributes of habitats at 30-m resolution. 

Surface water data: The presence of surface water in the form of rivers and lakes, as well as oceans, in 

the vicinity of a site is one of the most important factors in determining suitability of a habitat for many 

plant and animal species. While large water bodies are usually persistent over the course of multiple 

years, smaller, ephemeral water sources can disappear from one season or year to the next. To capture 

this, we opted for dynamically generated binary maps of surface water based on Landsat-8 multispectral 

satellite imagery (using the automated water extraction index [AWEIsh] thresholded at zero) instead of a 

static land cover map 35. 

Multispectral indices: To further highlight certain aspects of environmental conditions, we made use of 

a selection of indices derived from Landsat-8 multispectral imagery, including the normalized difference 

vegetation index (NDVI), normalized difference water index (NDWI), and continuous AWEIsh as these 

are sensitive to vegetation health, plant water, and surface water.  

4.4 MODELING APPROACH 
We used a supervised binary classification model for each focal species. We first experimented with 

several types of regression and machine learning models on a subset of our focal species to examine 

modeling speed and accuracy before running models for all species. Based on these experiments, we 

landed on Microsoft’s machine learning Light Gradient Boosting Model library (LightGBM) because it 

performed best and is known to be robust and well-suited for classification tasks that rely on input 

variables with vastly different scales and distributions. After our initial experimentation phase, we 

applied this gradient boosting algorithm to the remaining focal species.  

The gold standard for HSMs is to train models on species presence and absence data collected following 

a scientifically guided, stratified random sampling design, as this greatly improves the discrimination 

between suitable (i.e., where a species is likely to be present) and unsuitable habitats (i.e., where a 

species is likely to be absent) and our ability to draw broader conclusions about a species distribution 17. 

However, “true” data on species absences are often logistically and financially difficult to obtain across 

large study areas. In these cases, models can be trained with presence-only data augmented with 

background samples, which are in principle equivalent to “pseudo-absences” and thus meant to 

approximate environmental conditions where the species of interest was not present 17,36. Then, similar 

to the presence-absence gold standard, environmental conditions at presences can be statistically 

compared to those at background sampling locations, to generate inference on the relative likelihood of 
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species occurrence (as opposed to actual probabilities of occurrence generated when using presence-

absence data) 26. Since GBIF species occurrence data is presence-only 37, we augment these observations 

with background samples using three approaches briefly explained below that differ in how they 

attempt to account for the bias in opportunistically collected data.   

4.4.1 Background Sampling Methods 

Bias layer: This approach builds off the “Factor Bias Out” method used in Maxent HSM modeling, which 

uses focal species presences to inform where background samples (i.e., pseudo-absence locations) will 

be drawn 38,39. Here, each focal species' presences are viewed as being drawn from an unknown 

probability distribution over the geographic region of interest. We used Gaussian kernel density 

estimation to obtain the probability density distribution of focal species’ GBIF observations. Background 

samples were then drawn from this estimated distribution such that they exhibit the same geographic 

bias as the species observations themselves. Key to this approach, is the ability to tune the estimated 

probability density distribution such that the background points are suitable for model training. For 

example, a loose fit to the focal species observations would result in background samples that are, on 

average, far from the species observations and may not enable model training that is sufficiently 

discriminative. On the other hand, background samples that are too close to the species observations 

are likely to falsely represent a pseudo-absence (i.e., when presences and pseudo-absence occur at the 

same location). Therefore, we optimized this geographic bias by tuning the bandwidth parameter of a 

Gaussian kernel. 

Target-group: Following this method, background samples are selected at random from GBIF 

observations of similar species (i.e., the target group) to represent the same specimen collection or 

observation bias as the focal species 40,41. This method also aims to select background points that are 

most likely to be absences, given collection/observation methods are generally similar for similar 

species. For example, birders are likely to record all bird species seen or heard (except perhaps for the 

very common birds) and therefore a bird species not recorded is likely to be absent. In our study, we 

considered the target group to be species that belong to the same taxonomic class as the focal species. 

We applied this method only to a subset of our focal species because initial tests suggested it was less 

accurate compared to the other two background sampling approaches. 

Environmental clustering: For this final background sampling approach, we use K-means clustering to 

cluster all GBIF observations for focal species based on the environmental features. The background 

samples were then randomly drawn, in equal numbers across all clusters. This allows us to compare the 

focal species observations to background samples across the full range of environmental conditions in 

the region of interest.  

4.4.2 Model Training and Evaluation 

For each focal species, we randomly split the available GBIF observations into 85 % training/validation 

and 15 % testing data. Background samples for the test set were randomly drawn from all GBIF 

observations, excluding those of the corresponding focal species. We selected the best-performing 

hyper-parameter set for each species model based on 5-fold cross-validation on the training/validation 

set.  

We used several machine learning evaluation metrics, including precision and recall (see description in 

Fig. 3), and F1 score to evaluate overall model performance. Precision measures how often our model 
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classifications of habitat were true habitat, whereas recall measures how often our models classified 

true habitat as suitable habitat. F1 score (scaled between 0 and 1) is defined as the harmonic mean of 

precision and recall, thus, combining the two into a single metric. 

 

Figure 3. Confusion matrix, defining precision and recall. Precision can answer how often our 

classification of habitat were correct, and recall can answer how often we classified true habitat as 

habitat. The columns describe the true conditions (i.e., species habitat or not), and the rows describe 

the HSM-predicted conditions (i.e., suitable versus unsuitable habitat). 

4.5 MEASURING BIODIVERSITY 
We selected two metrics of biodiversity in this pilot study – estimated species richness and habitat 

intactness – because both can be obtained from HSMs and provide information about different aspects 

of biodiversity (described below). Both are also key metrics recommended to be used, either by 

themselves (species richness) or incorporated into other metrics (habitat intactness is a component of 

the Ecosystem Integrity Index 42), by the International Union for Conservation of Nature (IUCN) 43, 

United Nations Environment Programme (UNEP), and the TNFD 44.    

Relative species richness: Species richness measures the number of different species present in a given 

area and can be estimated by stacking and summing individual HSMs. Using this method, richness is 

reliably estimated (i.e., estimated richness = true richness) only when HSMs are generated with 

presence-absence data and represent probability of species occurrence 26,45. When HSMs are generated 

with presence-background data representing relative likelihood of species occurrence, richness is not 

expected to be reliably estimated, but has been shown to be correlated with true richness (i.e., 

estimated richness = index of true richness) 26. Because our HSMs were developed with presence-

background data rather than presence-absence data, we were able to estimate an index of richness, 

hereafter referred to as “relative species richness”.  

Habitat intactness: Habitat intactness is an index of habitat condition based on habitat quality, quantity, 

and connectivity. This is a valuable index because habitat impacts are the primary cause of biodiversity 

loss across the globe, and these impacts to habitats can occur via the loss of total area, loss of quality 

(i.e., degradation), and/or loss of connectivity (i.e., fragmentation). The loss of habitat area affects the 

number of species and size of populations that can depend on that area. The loss of quality affects the 
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ability to acquire nutritional and reproductive requirements, which then affects survival and 

reproduction, and the loss of connectivity can limit and even prevent movement and access to those 

nutritional and reproductive resources. To evaluate habitat intactness, we used the following habitat 

intactness index created by Beyer et al. (2020) 46, 

 

where 𝑑𝑖𝑗 is the distance between grid cells i and j, 𝑤 is a measure of the quality of the grid cell in the 

range 0 – 1, and N is the number of grid cells within a spatial unit (i.e., study area of interest). 𝑧 is a 

parameter that scales the product of the two cell qualities and 𝛽 is a parameter that scales the effect of 

distance between the grid cells. Therefore, this index uses gridded continuous representations of 

habitat quality (such as HSMs where raster grid cell values equate to habitat suitability) and is designed 

to be proportional to habitat area and quality and to decline monotonically as fragmentation increases. 

5 RESULTS AND DISCUSSION 

5.1 MEASURING HABITAT SUITABILITY 
Using the GBIF platform we were able to obtain data for 52 focal species of plants and animals across 

the study area that met our inclusion criteria of occurring within the two ecoregions of interest in 

Washington State, having more than 500 observations in GBIF, and being recorded to species level. In 

total, our final dataset included four amphibian species, 34 birds, 1 mammal, and 13 plants (see full list 

in Table 2A, Appendix A). Fifteen of these species were considered to have a preference for wetlands 

based on their known life histories. For example, we included the American bittern (Botaurus 

lentiginosus), which is a species of wading bird in the heron family. This bird prefers bogs, marshes, and 

vegetated areas around lakes and ponds. Our list also included bird species like the ruffed grouse 

(Bonasa umbellus), which is an early successional forest specialist. 

Our 52 species-specific HSMs indicated that suitable habitat in the vicinity of the Cherry Point Refinery 

varies within each individual HSM and between each species’ HSMs; though, as expected, suitable 

habitat frequently overlapped with the more natural areas and unsuitable habitat overlapped with more 

industrialized spaces. For example, for one of our wetland species, the American bittern, we found high 

habitat suitability values in the wetlands north of the refinery where restoration has been ongoing for 

many years (Fig. 4). In the same area, we also found some evidence of higher habitat suitability for one 

or our habitat generalist species, the American robin (Fig. 4). Overall, however, the American robin, who 

is a common habitat generalist, was found to have lower habitat suitability across the study area 

compared to the American bittern. This may be a result of observers not recording or unevenly 

recording common species across all the locations that they are seen. We explored some of the 

differences in habitat suitability between habitat specialists and generalists below but believe that 

integrating site-level field data will be an important way to account for these types of biases in the 

future.  

In addition to differences among habitat specialization, we also found some unanticipated anomalies in 

where habitat was predicted to be suitable. For example, we found some instances of high suitability 
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predicted in the industrialized portions of the study area that may be due to water vapor or high 

reflectance from the impervious surfaces but require further investigation.  

 

 

Figure 4. Habitat suitability models (HSMs) for two species and two years (2014 and 2021). The top 

row indicates the study area that bounds the HSMs depicted in the center and bottom rows. The 

center row depicts the HSM results for the American bittern (Botaurus lentiginosus), with the far-right 

image representing the aerial image of the study area bounded by the purple box. The bottom row 

depicts the HSM results for the American robin (Turdus migratorius). Habitat suitability values reflect 

the estimated relative likelihood of species occurrence within a grid cell. 

 

For this pilot project, we engaged in a significant effort to account for biases in the GBIF data via the 

testing and evaluation of three methods of background sampling. We found that the HSMs developed 

using the bias layer method of background sampling had the highest recall but the lowest precision (see 

Fig. 3 for a description of these metrics), compared to other background sampling methods (Fig. 5). 

Finding low precision is surprising given the use of this method in the scientific literature and its 

recommendation for reducing biases associated with opportunistic data (see section Challenges and 

lessons learned below). The environmental clustering method on the other hand had lower recall than 

the bias method, but much higher precision, whereas the target group method, which was applied to 

only a subset of species from our initial model experiments, appears to have the lowest recall and 
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lowest average precision of the background sampling methods. We believe that combining methods 

such as the bias layer (highest recall) and environmental clustering (highest precision on average) could 

be a path towards creating even better performing models that account for multiple types of bias. 

 

 

Figure 5. Comparison of recall and precision of HSMs developed from three different background 

sampling methods. The bias layer (bias) and environmental clustering (cluster) methods were applied 

to all 52 species. The target group (target) method was applied only to 12 species in an initial 

examination of methods.  

By focusing on the F1 score, which aims to balance recall and precision, and evaluating how this metric 

varies by taxonomic group and habitat specialization, we were able to better understand some of the 

factors affecting model performance. We found that on average the environmental clustering method of 

background sampling resulted in the best performing HSMs for plant species (Fig. 6, top left panel). HSM 

performance for animals, on the other hand, was similar across background sampling methods. We 

found that HSMs with the highest F1 score were those created for habitat specialists (Fig. 6, top right 

panel) over those created for generalist species. We also observed a higher HSM performance for 

species with a preference for wetland habitats (Fig 6, bottom left panel). In other words, species having 

a strong preference for wetlands (e.g., the American bittern) resulted in models that were more 

accurate than models for non-wetland species (e.g., the American robin or ruffed grouse). We plan to 

continue integrating new data into the future and further evaluating how species life history may affect 

models. This is a key interest, as there may be other factors not associated with environmental 

conditions that affect where species are recorded, such as dispersal ability and biotic interactions. 

Incorporating local field survey data with GBIF data and using biotic interaction networks 47 or integrated 

species distribution model (iSDM; e.g., 48) could help to disentangle some of these effects. 
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Figure 6. F1 scores for HSMs separated by the background sampling method used and species’ 

taxonomic kingdom (top left panel), whether the species were habitat specialists or not (top right 

panel), or whether the species are known to prefer wetlands at any point in their life cycle (bottom 

left panel). Depending on the panel, yes represents specialist species or species with a wetland 

preference. 

5.2 MEASURING BIODIVERSITY 
Our preliminary, continuous index of relative species richness indicated little to no change in richness 

over the main industrialized portions of our study area (center pixels of Fig. 7), while across the 

surrounding property there were areas of increasing richness (green pixels in Fig. 7), including in areas 

where wetland restoration has been ongoing (locations indicated in Fig. 4). Because this index was 

generated from a range of species, it is a start to examining species richness and can be useful for 

examining spatial and temporal trends. However, as it is an index of richness, the actual values may be 

less meaningful until integrated with local field survey data. We also aim to add in more recent GBIF 

data as it is recorded, and further tune the background sampling approaches, which are all avenues for 

improving model performance and bolstering our understanding of how biodiversity is changing over 

space and time.  
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Figure 7. The left panel depicts the estimated change in relative species richness from 2014 to 2022 

over the Cherry Point Refinery (i.e., a value of 10 indicates that relative richness increased by 10 

species). Because we focused on terrestrial species and not marine species, we caution any 

interpretation of the marine environments along the western edge. The right panel depicts the aerial 

image of the study area bounded by the purple box. 

 

Within the wetland restoration areas (identified in Fig. 4), relative species richness tended to increase 

slightly over time (Fig. 8, left panel). These are preliminary findings that may indicate true improvements 

in habitat and subsequent biodiversity but should be validated with further study. For example, 

examining the contribution of each species’ HSM to this trend could help us understand which species 

and/or species groups (e.g., specialists and generalists) were most influential.  

Looking across the entire study area, habitat intactness also tended to increase slightly on average (Fig. 

8, right panel). This suggests that habitat intactness – which accounts for habitat quality, area, and 

connectivity – has been increasing from a multi-species perspective. However, there was substantial 

variability in habitat intactness across species. Therefore, these results need further validation and 

evaluation to understand for what species and species groups habitat intactness is increasing, 

decreasing, or not changing. 
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Figure 8. Estimated trends and 95% confidence intervals in relative species richness within the 

wetland restoration areas (left panel) and habitat intactness estimated across the entire study area 

(right panel). Error bars in left panel represent the standard deviation in relative species richness 

within the wetlands (i.e., variation in grid cell values). Error bars in right panel represent the standard 

deviation in habitat intactness across species. Habitat intactness (Q) is calculated using the equation 

shown in section 4.5 Measuring Biodiversity. 

5.3 CHALLENGES AND LESSONS LEARNED 
In this application, the HSMs and our subsequent measures of relative species richness and habitat 

intactness are a function of the species selected, which is based on species with greater than 500 

observations in GBIF. Consequently, very rare species or vagrant species that have few records were 

excluded, following the assumption that a representative geographic distribution cannot be reliably 

inferred from the few records. In addition to this bias against rare species, there is a bias against 

relatively abundant species that, from an observer point of view, do not warrant a recording in GBIF 

because of how common they are. This also applies to species and species groups that are either difficult 

to identify to species level or are typically underreported (e.g., individual grass species).  

These issues largely stem from the inherent biases associated with GBIF data, which while containing 

millions of records and thus a wealth of information about biodiversity, are opportunistically collected. 

Because they are opportunistically collected, and not collected following a statistically rigorous sampling 

design (e.g., stratified random), species presences are more likely to be recorded near roads and human 

activities, and charismatic or interesting species are more likely to be recorded than common species.  

Moreover, given the wealth of observations in GBIF and easy access, it may also be easy to overlook the 

importance of thinking about the relevancy of certain species to an HSM. For example, if selecting forest 

specialist species when the study area largely covers wetlands, your habitat suitability score will be 

lower. Therefore, if one wants to measure improvements in wetland habitat across spatial or temporal 

gradients, one should choose species or a subset of species that are more closely associated with the 

wetlands of the region of interest. The beauty of the present approach is that you can choose from a 
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range of species, to qualify a specific habitat suitability, but also choose a single species to infer their 

likely distribution across the landscape. 

It is important to recognize and understand how opportunistically collected data can lead to model 

uncertainty (e.g., false predictions of species distribution). The following are other factors that are also 

likely to affect interpretation of HSMs.  

Assumption of equilibrium: Underlying HSMs is the assumption that species habitat preferences are 

constant over space and time, and that all suitable habitats are occupied and all unsuitable habitats are 

unoccupied 17,49. This may be unrealistic as species distributions are likely not static, but instead 

changing/evolving over space and time 50. Invasive species, for example, may have only begun invading a 

new region and not yet occupy all suitable habitats by the time species observations are recorded. 

Species habitat preferences may also be changing with climate change. To address this limitation, 

researchers are increasingly incorporating dynamic approaches to estimate temporal changes in species 

distributions 50.   

Lack of incorporation of biotic interactions: HSMs often do not account for biotic interactions, such as 

competition and predation, which can affect the distribution and abundance of species. These 

interactions are difficult to account for in typical HSMs. 

6 DIGITAL BIODIVERSITY PLATFORM 

Implementation of these HSMs formed the backbone of a digital biodiversity platform that we 

developed within bp’s Azure environment, thereby creating one place for storing biodiversity data from 

different sources and for handling AI machine learning analyses, evaluating model inference, and 

creating data visualizations. The digital biodiversity platform significantly accelerates creation of new 

models and makes it easy to manage them through the whole life cycle. Via this platform, everything is 

automated and orchestrated using Microsoft’s Planetary Computer and Azure’s newest solutions. 

Our development of the platform within Azure enables integration of biodiversity modeling with the 

following advanced data science functionalities: 

Automated model training and deployment: Azure Machine Learning (ML) offers features like 

automated machine learning, hyperparameter tuning, and model deployment pipelines, which help 

accelerate model productization. We used these capabilities to build a platform to automate the entire 

process of data ingestion, processing, model training, deployment and monitoring. 

Collaboration and version control: The platform enables team collaboration and version control, 

allowing team members to work on the same codebase and model versioning. Azure ML provides 

support for Git integration (software used for version control), allowing the team to manage and track 

code changes more effectively. 

Scalability and performance: The platform provides access to scalable resources for training and 

deploying models, such as high-performance computing (HPC) clusters and GPUs. Azure ML offers a 

range of compute options, including Azure Virtual Machines, Azure Batch, and Azure Kubernetes Service 

(AKS), which can help scale up or down model implementation based on the team's needs. 
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Monitoring and logging: The platform provides real-time monitoring and logging of model performance 

and usage, helping the team to identify and resolve issues quickly. Azure ML provides Azure Monitor, 

which helps tracking performance and health of deployed models. 

Integration with other tools and services: The platform can be integrated with other tools and services, 

such as Jupyter Notebooks. Azure ML also provides integrations with Azure services like Azure Data 

Factory, Azure DevOps, and Azure Blob Storage. 

Given the presence of these functionalities, the platform naturally serves as a framework for future 

development aimed at expanding the range of analyses, applying new models, and extending 

visualization capabilities. Moreover, future implementation timelines are expected to be much faster 

than the initial development, as the whole design and its application and guidelines are now firmly in 

place. 

7 WHERE DO WE GO FROM HERE? 

The science is clear: protecting and restoring nature is essential to achieving the world’s biodiversity, 

climate, and sustainability goals, and past conservation efforts have not solved the problem. The recent 

Kunming-Montreal Global Biodiversity Framework represents an inflection point for biodiversity, calling 

for the transformative changes needed to bend the curve on biodiversity loss and achieve a nature 

positive world. 

Bending the curve on biodiversity loss requires a better understanding of the status and trends of 

ecosystems and species. Monitoring and evaluation are critical to advancing this understanding, and to 

identifying areas of high conservation value, such as areas with high species richness or unique 

ecosystems that may be at risk from habitat loss, climate change, or other threats. Better monitoring 

data is also necessary to help prioritize conservation interventions, allocate resources more effectively, 

and understand the benefits of conservation interventions, such as the ecosystem services provided by 

intact ecosystems.  

Advancing progress towards a nature positive world requires more accessible technologies for 

monitoring and evaluating the state and changes in biodiversity. Recent advances in technology, 

described below, now give us a unique capability to record and track species and environmental 

conditions in new ways and at temporal and spatial scales not seen before. Finding ways to collect and 

integrate these data into our HSM pipeline is key to improving our modeling approach and ability to 

accurately track biodiversity. 

eDNA: Advances in next-generation sequencing technologies have unlocked the use of environmental 

DNA (i.e., DNA that is shed by organisms in the environment) as a tool for monitoring biodiversity. 

Water, soil, and even air samples can now be analysed to give a snapshot of the biodiversity present in 

the area and soon it will be possible to use these tools to identify unique individuals for estimating 

species’ densities.  

Bioacoustics: Bioacoustics are emerging as an important remote-sensing tool for conservation due to 

the development of cheap recording devices (<$100 per unit) with broad bandwidth recording 
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capabilities and advances in deep learning algorithms that enable automated identification of different 

species by comparing the spectral shape of the sound recorded against a library of sounds.  

Drones: High resolution drone surveys are also being used to collect highly accurate and detailed data 

about species and their habitats. Drones equipped with high-resolution cameras can be flown over large 

and difficult-to-reach areas, providing a more comprehensive view of the biodiversity present in a 

particular region. This data can be used to monitor changes in biodiversity over time, identify areas of 

high conservation value, and inform conservation management strategies. Drones can also be equipped 

with LiDAR and other sensors to help researchers gather information on the structure and composition 

of ecosystems, including vegetation cover, topography, and soil characteristics. 

Hyperspectral sensors: Hyperspectral sensors have the ability to capture data at higher spectral 

resolution than multispectral sensors. This enables researchers to detect subtle differences in vegetation 

and land cover, such as variations in leaf pigments, that can indicate changes in ecosystem health and 

biodiversity.  

Synthetic Aperture Radar: Synthetic Aperture Radar (SAR) can penetrate clouds and vegetation cover to 

provide data on topography, soil moisture, and other environmental variables. SAR can also detect 

changes in surface structures over time, such as the expansion of human settlements or changes in the 

distribution of water bodies, which can affect biodiversity. 

Machine learning and computer vision: AI technologies are rapidly advancing in their ability to monitor 

biodiversity, by providing new ways to analyze and interpret large volumes of data. By training computer 

algorithms to recognize patterns and features in images, researchers can automate the identification 

and classification of species and their habitats. For example, computer vision algorithms can be trained 

to recognize individual species from photographs or drone footage, allowing researchers to collect data 

on species distributions and population sizes. Similarly, machine learning can be used to analyze sound 

recordings and identify species based on their vocalizations. These techniques can also be used to 

monitor changes in biodiversity over time, such as shifts in species distributions or changes in habitat 

quality.  

As the cost of these technologies decrease, there is an opportunity to deploy them at scale in ways that 

overcome some of the limitations and biases currently associated with opportunistically collected citizen 

science data like GBIF. Integration with HSMs can then generate more accurate inference, at finer 

resolutions and broader extents, moving us towards temporally and spatially continuous monitoring of 

biodiversity. Our digital biodiversity platform is a tool that can help take us in that direction.  

We know there is significant work to do to get our planet on the right track, but through partnerships 

like these, we have a chance to make a lasting difference. 

 

  



   

 

 23  

 

8 REFERENCES 

1. WWF. Living Planet Report 2022 - Building a nature-positive society. 

https://www.worldwildlife.org/pages/living-planet-report-2022 (2022). 

2. IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem 

services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 

Services. 

https://ipbes.net/system/tdf/ipbes_global_assessment_report_summary_for_policymakers.pdf?

file=1&type=node&id=35329 (2019). 

3. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014). 

4. Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 5. 

https://www.cbd.int/gbo5 (2020). 

5. WEF. The Global Risks Report 2023 18th Edition. www.weforum.org (2023). 

6. WEF. Nature Risk Rising: Why the Crisis Engulfing Nature Matters for Business and the Economy. 

www.weforum.org (2020). 

7. IPCC. Land–climate interactions. Climate Change and Land (Cambridge University Press, 2022). 

doi:10.1017/9781009157988.004. 

8. Scheffer, M. et al. Anticipating Critical Transitions. Science 338, (2012). 

9. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012). 

10. UN DESA. The Sustainable Development Goals Report. https://unstats.un.org/sdgs/report/2022/ 

(2022). 

11. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for 

transformative change. Science 366, (2019). 

12. Dasgupta, H. The Economics of Biodiversity: The Dasgupta Review. (2021). 

13. Locke, H. et al. A Nature-Positive World: The Global Goal for Nature. (2021). 

14. G7. 2030 Nature Compact. (2021). 

15. TNFD. The TNFD Nature-Related Risk and Opportunity Management and Disclosure Framework - 

Beta v0.2. (2022). 

16. CBD. Kunming-Montreal Global Biodiversity Framework. https://www.cbd.int/article/cop15-final-

text-kunming-montreal-gbf-221222 (2022). 

17. Guisan, A., Thuiller, W. & Zimmerman, N. E. Habitat Suitability and Distribution Models, with 

Applications in R. (Cambridge University Press, 2017). 

18. Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat 

suitability models to predict species presences. Ecol Modell 199, 142–152 (2006). 

19. Elith, J. et al. Presence-only and presence-absence data for comparing species distribution 

modeling methods. Biodiversity Informatics 15, 69–80 (2020). 

20. Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. 

Ecography 29, 129–151 (2006). 

21. Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance of presence-

only species distribution models: a benchmark study with reproducible code. Ecol Monogr 92, 

(2022). 

22. Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only 

data with random forests. Ecography 44, 1731–1742 (2021). 



   

 

 24  

 

23. Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction 

across space and time. Annu Rev Ecol Evol Syst 40, 677–697 (2009). 

24. Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: 

Pooling survey and collection data for multiple species. Methods Ecol Evol 6, 424–438 (2015). 

25. Smith, A. B. & Santos, M. J. Testing the ability of species distribution models to infer variable 

importance. Ecography 43, 1801–1813 (2020). 

26. Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and 

models to applications. Global Ecology and Biogeography 24, 276–292 (2015). 

27. Santini, L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the 

reliability of species distribution projections in climate change research. Divers Distrib 27, 1035–

1050 (2021). 

28. Ranc, N. et al. Performance tradeoffs in target-group bias correction for species distribution 

models. Ecography 40, 1076–1087 (2017). 

29. Case, M. J. & Lawler, J. J. Integrating mechanistic and empirical model projections to assess 

climate impacts on tree species distributions in northwestern North America. Glob Chang Biol 23, 

2005–2015 (2017). 

30. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change 

on the future of biodiversity. Ecol Lett 15, 365–377 (2012). 

31. Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat 

models. Ecol Lett 8, 993–1009 (2005). 

32. Strassburg, N. et al. Strategic approaches to restoring ecosystems can triple conservation gains 

and halve costs. Nat Ecol Evol 3, 62–70 (2018). 

33. Tewksbury, J. J. et al. Natural history’s place in science and society. Bioscience 64, 300–310 

(2014). 

34. Cretois, B. et al. Identifying and correcting spatial bias in opportunistic citizen science data for 

wild ungulates in Norway. Ecol Evol 11, 15191–15204 (2021). 

35. Feyisa, G. L., Meilby, H., Fensholt, R. & Proud, S. R. Automated Water Extraction Index: A new 

technique for surface water mapping using Landsat imagery. Remote Sens Environ 140, 23–35 

(2014). 

36. Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for 

background and pseudo-absence data. Ecological Applications 19, 181–197 (2009). 

37. Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol 

Conserv 173, 144–154 (2014). 

38. Phillips, S. J., Dudík, M. & Phillips, S. J. Modeling of species distributions with Maxent: new 

extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008). 

39. Dudík, M., Schapire, R. E. & Phillips, S. J. Correcting sample selection bias in maximum entropy 

density estimation. 

40. Barber, R. A., Ball, S. G., Morris, R. K. A. & Gilbert, F. Target-group backgrounds prove effective at 

correcting sampling bias in Maxent models. Divers Distrib 28, 128–141 (2022). 

41. Botella, C., Joly, A., Monestiez, P., Bonnet, P. & Munoz, F. Bias in presence-only niche models 

related to sampling effort and species niches: Lessons for background point selection. PLoS One 

15, (2020). 

42. Hill, S. L. L. et al. The Ecosystem Integrity Index: a novel measure of terrestrial ecosystem 

integrity with global coverage. Biorxiv (2022) doi:10.1101/2022.08.21.504707. 



   

 

 25  

 

43. Stephenson, P. J. & Carbone, G. Guidelines for planning and monitoring corporate biodiversity 

performance. (IUCN, International Union for Conservation of Nature, 2021). 

doi:10.2305/iucn.ch.2021.05.en. 

44. UNEP. Nature Risk Profile: A methodology for profiling nature related dependencies and impacts. 

(2023). 

45. Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and 

adjusting bias by linking them to macroecological models. Global Ecology and Biogeography 23, 

99–112 (2014). 

46. Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion 

intactness highlight urgency of globally coordinated action. Conserv Lett 13, 1–9 (2020). 

47. Staniczenko, P. P. A., Sivasubramaniam, P., Suttle, K. B. & Pearson, R. G. Linking macroecology 

and community ecology: refining predictions of species distributions using biotic interaction 

networks. Ecol Lett 20, 693–707 (2017). 

48. Landau, V. A., Noon, B. R., Theobald, D. M., Hobbs, N. T. & Nielsen, C. K. Integrating presence-

only and occupancy data to model habitat use for the northernmost population of jaguars. 

Ecological Applications 1–15 (2022) doi:10.1002/eap.2619. 

49. Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. 

Trends in Ecology and Evolution vol. 23 149–158 Preprint at 

https://doi.org/10.1016/j.tree.2007.11.005 (2008). 

50. Milanesi, P., Della Rocca, F. & Robinson, R. A. Integrating dynamic environmental predictors and 

species occurrences: Toward true dynamic species distribution models. Ecol Evol 10, 1087–1092 

(2020). 

  



   

 

 26  

 

9 APPENDIX A 

Table 1A. List of environmental variable types (input variables), the type-specific layers, and how the 

data were aggregated into features for model training and implementation. 

ID input variables layer description 
full temporal 

range 

aggregation 
# 

features 
temporal 

temporal 
function 

spatial  
function 

8 
Multispectral 
Bands (L-8) 

COASTAL reflectance image (DN 
* 0.0000275 - 0.2) 

full previous 
calendar year 

seasonal median mean 4 

9 seasonal median 
standard 
deviation 

4 

12 
BLUE reflectance image (DN 

* 0.0000275 - 0.2) 
seasonal median mean 4 

13 seasonal median 
standard 
deviation 

4 

16 
GREEN reflectance image (DN 

* 0.0000275 - 0.2) 
seasonal median mean 4 

17 seasonal median 
standard 
deviation 

4 

20 
RED reflectance image (DN 

* 0.0000275 - 0.2) 
seasonal median mean 4 

21 seasonal median 
standard 
deviation 

4 

24 
NIR reflectance image (DN 

* 0.0000275 - 0.2) 
seasonal median mean 4 

25 seasonal median 
standard 
deviation 

4 

28 
SWIR1 reflectance image (DN 

* 0.0000275 - 0.2) 
seasonal median mean 4 

29 seasonal median 
standard 
deviation 

4 

32 
SWIR2 reflectance image (DN 

* 0.0000275 - 0.2) 
seasonal median mean 4 

33 seasonal median 
standard 
deviation 

4 

SUBTOTAL 56 

36 
Multispectral 
Indices (L-8) 

NDVI calculated on L-8 
reflectance: 
(NIR - RED) / (NIR + 
RED) 

full previous 
calendar year 

seasonal median mean 4 

37 seasonal median 
standard 
deviation 

4 

44 
NDWI calculated on L-8 

reflectance: 
(NIR - SWIR1) / (NIR + 
SWIR1) 

seasonal median mean 4 

45 seasonal median 
standard 
deviation 

4 

48 
AWEI_sh calculated on L-8 

reflectance: 
BLUE + 2.5*GREEN - 
1.5*(NIR+SWIR1) - 
0.25*SWIR2 

seasonal median mean 4 

49 seasonal median 
standard 
deviation 

4 

SUBTOTAL 24 
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Table 1A continued. 

ID input variables layer description 
full temporal 

range 

aggregation 
# 

features 
temporal 

temporal 
function 

spatial  
function 

56 
NASA DEM 

elevation 
elevation above sea 
level 

single observation 
(2000) 

none none none 1 

57 slope slope of terrain none none none 1 

58 aspect 
aspect (direction) of 
terrain 

none none none 1 

SUBTOTAL 3 

59 
TerraClimate Ws monthly average 

wind speed (m/s) 
10 full previous 
calendar years; 
values for each 
season in each 
year 
summed/averaged 
(depending on 
variable) before 
further 
aggregation 

seasonal mean nearest 4 

60 seasonal 
standard 
deviation 

nearest 4 

61 
Ppt monthly 

accumulated 
precipitation (mm) 

seasonal mean nearest 4 

62 seasonal 
standard 
deviation 

nearest 4 

63 
Swe modeled(?) snow 

water equivalent at 
end of month (mm) 

seasonal mean nearest 4 

64 seasonal 
standard 
deviation 

nearest 4 

65 
Tmax monthly maximum 

air temperature (°C) 
seasonal mean nearest 4 

66 seasonal 
standard 
deviation 

nearest 4 

67 
Tmin monthly minimum 

air temperaturs (°C) 
seasonal mean nearest 4 

68 seasonal 
standard 
deviation 

nearest 4 

SUBTOTAL 40 

69 
Water surface 

water 
(binary) 

surface water binary 
map derived from 
Landsat-8 AWEI_sh; 
thresholded at 0 

full previous 
calendar year 

seasonal median 
% water/no 
water 

4 

70 seasonal median 
dist. to 
nearest 
pixel 

4 

SUBTOTAL 8 
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Table 2A. List of 52 focal species for which we developed habitat suitability models. 

Species Common Name 
Number of GBIF 

Observations 

Aegolius acadicus Northern saw-whet owl 1231 

Aix sponsa Wood duck  13821 

Anas platyrhynchos Mallard duck 81533 

Ardea herodias Great Blue Heron 63304 

Bombycilla cedrorum Cedar waxwing 33327 

Bonasa umbellus Ruffed grouse 2171 

Botaurus lentiginosus American bittern 1441 

Branta canadensis Canada goose 67812 

Bucephala albeola Bufflehead 45796 

Buteo jamaicensis Red-tailed hawk 53972 

Cardellina pusilla Wilson's warbler 19722 

Catharus ustulatus Swainson's thrush 24629 

Charadrius vociferus Killdeer 30539 

Chordeiles minor Common nighthawk 3080 

Cornus sericea Red osier dogwood 779 

Dryobates pubescens Downy woodpecker 41326 

Dryocopus pileatus Pileated woodpecker 27478 

Gallinago delicata Wilson's Snipe 5381 

Haliaeetus leucocephalus Bald eagle 79663 

Hirundo rustica barn swallow 35496 

Holodiscus discolor Oceanspray 2265 

Ixoreus naevius Varied thrush 29574 

Lithobates catesbeianus American bullfrog 522 

Lonicera involucrata Black twinberry 604 

Melospiza lincolnii Lincoln sparrow 8693 

Odocoileus hemionus Black-tailed deer 3376 

Oemleria cerasiformis Indian plum 2462 

Passerculus sandwichensis Savannah sparrow 20588 

Poecile atricapillus Black-capped chickadee 99852 

Porzana carolina Sora 1425 

Pseudacris regilla Pacific tree frog 1703 

Pseudotsuga menziesii Douglas-fir 2943 

Rallus limicola Virginia rail 7242 

Rana aurora Northern red-legged frog 509 

Rosa nutkana Nootka rose 785 

Rubus parviflorus thimbleberry 2197 

Rubus spectabilis Salmonberry 3179 

Sambucus racemosa Red elderberry 1279 

Setophaga coronata Yellow-rumped warbler 34660 
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Table 2A continued.   

Species Common Name 
Number of GBIF 

Observations 

Setophaga petechia Yellow warbler 14621 

Sphyrapicus ruber Red-breasted sapsucker 21765 

Spiraea douglasii Rose spirea 946 

Strix varia Barred owl 10721 

Sturnus vulgaris Starling 80621 

Symphoricarpos albus Common snowberry 2366 

Tachycineta bicolor Tree swallow 22905 

Tachycineta thalassina Violet-green swallow 41403 

Taricha granulosa Rough-skinned newt 751 

Thuja plicata Western redcedar 3085 

Tsuga heterophylla Western hemlock 1220 

Turdus migratorius American robin 139168 

Vireo gilvus Warbling vireo 14853 

 

 

 

 

 


